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Avoiding Higgs Fields 
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We show that it is possible within the given structure of Yang-Mills gauge theor- 
ies to construct massive models without Higgs fields. We also discuss briefly the 
fermion mass term in this approach. 

Although the introduction of the Higgs fields and Higgs mechanism 
(Higgs, 1964a,b, 1966; Kibble, 1967) has been the only way to formulate 
massive gauge field theories, nevertheless it remains a phenomenological 
solution. In addition to the fundamental problems with Higgs fields, such 
as their existence, one has to deal with a lot of ad hoe parameters (for 
example, in the Higgs potential) which are responsible for spontaneous sym- 
metry-breaking (SSB) channels. Furthermore, one has to choose a certain 
representation of the gauge group for the Higgs field to produce the desired 
SSB, as there exist different representations belonging to the same minimum 
of the Higgs potential but causing different SSB directions. There are various 
problems of the standard model that are related to the Higgs field, for 
example, the fermion mass relation. Altogether the situation of the Higgs 
field and the Higgs mechanism within the standard model seems similar to 
that of the epicycles and eccentrics in Ptolemaic astronomy, which were 
introduced to improve the (wrong) geocentric system (e.g., Sambursky, 
1975). 

More or less in the same manner as in Ptolemaic astronomy, one may 
also change the point of view of the given structure of gauge field theory to 
get a realistic ("massive") model. 

We present here a possibility for massive Yang-Mills theories without 
Higgs fields and discuss briefly the problem of fermions in this approach. 

To begin with, we mention a qualitative relation between our approach 
and that of the noncommutative geometry of gauge field theory, where one 
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tries to understand conceptually the Higgs fields (Connes, 1989). 2 There 
one incorporates Higgs fields into some components of a generalized gauge 
potential, which is enlarged by virtue of extra degrees of freedom and a 
related symmetry structure. It is a well known fact that a new localized 
degree of freedom coresponds to a suitable potential. In our approach we 
need not enlarge the given structure of Yang-Mills theories. Here the scalar 
Higgs field is built up of the vacuum expectation value (VEV) of the nonvan- 
ishing pure gauge potential part of the usual gauge potential after a gauge 
transformation. This VEV can be considered as a classical background of 
gauge potentials which do not propagate, in contrast to the true protentials. 
However, the SSB concept used by us to produce pure gauge potentials is 
mathematically equivalent to extra degrees of freedom (Connes, 1989) which 
have to be reduced to the "usual" number of degrees of freedom. 

Considering the Lagrange density for a SU(n) Yang-Mills model 

L,~Tr(FuvF~V), Fuv~A~,u-Au,v+[A~,A~ ] ( v = 0 - ~ )  (1) 

let us decompose the gauge potentials in the above-mentioned manner: 

Au=g,ug-l +gA'ug -~ Au= ; AuTi, [Ti, Tj]'~F.IjkT x 

Au:=B. + co., Fuv(Bu)-O 

Fuv( Au) ,.~ Fu~( cou) + O([ Bu , co~]) 

i Here we suppress all factors and co u are the usual gauge potentials, whereas 
B~ are pure gauge potentials. <B~> can be con'sidered as a classical back- 
ground of A~. 3 Furthermore, T~, i=  1 . . . . .  n 2 -  1, are generators of the 
SU(n) group. This decomposition means that we consider the gauge poten- 
tial A. in a special section of the fiber bundle or in a broken gauge where 
only some gauge transformations are allowed. 

Usually pure gauge potentials are identified by 

Bt~ "~g,ug-', Fuv(B~) =- 0 (2) 

where g~exp(Ty0 j)  is the matrix representation of a group element and 0 j 
are the group parameters. 

2Indeed, there are other attempts to avoid the Higgs fields, but all of them work outside of the 
given structure of usual gauge theories. These models use either new scalar potentials or vector 
potentials or higher degrees of freedom. That means they only replace Higgs fields, but they 
cannot avoid them. 

~I'his decomposition is analogous to that in general relativity, where one has gpv(x,)= 
~l~ v + h~,v(x~).  Here r/~ ~ is the constant Minkowski metric as classical background and h~ ~ is 
effectively the real gravitational potential which propagates as gravitational waves. 
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These potentials can be transformed away by a suitable gauge trans- 
formation of the gauge potentials, which is only a change of section of the 
related fiber bundle: 

t _ --! --t A u - g  A u g - g  g.u (3) 

However, if the gauge symmetry is broken such that some gauge bosons 
(potentials) acquire mass, one cannot apply the whole group of gauge trans- 
formations on A u or B u . Thus, one cannot transform B u away although it 
is a pure gauge potential. In other words, SSB may be considered as the 
possibility of a reduced gauge transformation of gauge potentials and fer- 
mions. This reduction may be represented by the nonvanishing VEV of 
the Higgs fields or by the reduction of the allowed gauge transformation 
transforming <Bs,> away. Let us consider such a (SSB), with G = SU(n)  and 
F =  S U ( n ) / S U ( m )  as broken subgroup of G, 4 

G ~ H ;  H = S U ( m )  

g ~ G ,  h ~ H ,  f ~ F ,  g: h .  f 

h , - ,exp(  TlOt), f ~ e x p (  TpO p) 

l = l , . . . , m 2 - 1 ;  p = l , . . . , n2 - m2 - 1  

(4) 

Thus, after SSB we can perform gauge transformations like (3) only with 
the group elements of H, i.e., 

B' v ,-, h- l  Buh - h -  l h,u (5) 

where we suppress all factors. Inserting B~ in (5), 

B' u ,,~ h- l  (g , ,g-I)h - h- l  h,u 

we obtain 

B'u ~ s  (6) 

which is not zero, although F~v(B~)=0. 
Now the SSB takes place in the following manner: First, we suppose 

that some components of 

(B~)#O;  p = l  . . . . .  n 2 - m 2 - 1  

~Fhe simplest case, where one can apply directly the SSB, is the case with G= SU(M) x SU(L), 
H=SU(L), .and F=SU(M). We give here only a qualitative approximation o f  SSB for the 
more  general case G= SU(n). In the case of  the adjoint representation for SSB vacuum one 
has  of  course SU(m) x U(I)  and so on, but  with respect to a qualitative analysis it is not  
important  with or without U(1). 
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This means that we originally have (because of <B~ > = 0) 

<B~>[Tj, T/] =0;  i , j = l  . . . . .  n 2 -  1 

Now, assuming <B~>~ < ( f j - l ) p >  #0,  we obtain for some generators TI, 

<B~>[T,, Tp] = 0, l = 1 . . . . .  rn 2 -  1 (7) 

However, in view of [Tp, Tq] ,-, epq~T r, we get the following relation for other 
generators: 

< nPp>[ Tp, Tq] 50 ( 8 )  

with {Tp, Tq, Tr}~F. 
The main question here is: Can we take some component of ( B u ) 5 0  

without disturbing the invariance properties of the vacuum? Indeed it is 
possible to do S o, because Bu is not a covariant quantity and has no observ- 
able meaning, as it is subjected to the gauge transformations. The only 
covariant quantity made up of gauge potentials which has to have an invari- 
ant vacuum is F ~ .  In fact, <Fu~(Bu))=O by definition. Thus, even if we 
take (B u > # 0, the relevant quantity has a zero ground state and it is invariant 
under all relevant transformations as the vacuum state. 

It is not hard to see that the decomposed Lagrangian (1) contains mass 
terms for quantized potentials 

F~,,,(Au) ,.~F,v(cou) + ([B~, co~] + [cou, B~]) 
(9) 

i i i i i j k j k F~,~(Au) ~ Fuv(cou) + e)k(B uo9 ~ + co~,O ~) 

Thus 

L ~Tr{Fuv(o~u)FUV(ogU)) - Tr(BuBUcoVog~) + ' ' "  (10) 

The mass term in the component version of (I) is proportional to the second 
term of (10), i.e., 

j .u k v__  j p k v z~kzibc< B uB b >Co vWc - --( gjcgkb " gjb~k~) < B uB b >co ~co, 
003 

2 k v j /.~ m c0~c0~,,~ <Bu><B j > 

whereas the first term in the rhs of (103 plays only the role of an interaction 
term. As pointed out earlier, if we suppose for some of the B, components 
that <B~> #0,  then some of the c0~ will get masses through the second term 
of (10) or (10'). 

Obviously, this is equivalent to the breakdown of symmetry by an 
adjoint representation, whereas in the case of Higgs fields one has the free- 
dom of using different representations of the gauge group. However, in this 
case one has to base the special representation of Higgs fields needed for the 
desired SSB, whereas in our approach the SSB representation <B,> is given 
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in a natural way. We would like to mention here that there exist models 
with noncommutative geometry which are subject to the same adjoint repre- 
sentation constraint as in our case (e.g., Dubois-Violette et aL, 1990, and 
references therein). 

Furthermore, there is not a great difference in standard models with 
respect to gauge bosons if one replaces the vector representation with the 
adjoint representation of our approach: The reason is simply that an SU(n) 
group breaks through a Higgs field in its vector representation in SU(n- 1), 
whereas it breaks down t o  6 S U ( n -  1) x U ( I )  if the Higgs field is an adjoint 
representation of SU(n). Thus there is no difference for these two channels 
in the case of SU(2) breaking and therefore also in the case of standard 
models of SU(2) x U(1) or SU(5). 7 we will discuss the exact pattern of the 
SSB for SU(2) x U(1) with (B , )  in a forthcoming paper. 

For fermion masses we briefly discuss here the simple case of the elec- 
tron only. From the QED Langrangian given by 

L'.~ ~e~/g(t~. --A.)~lle-]-" " ", (~. :=  
~X" 

we have 
~e~'#A.1Ve = ~/e)" ( n.) lVe-k ~e~'" co. llle (1 I) 

with A. or co. as the proton field and (B. )  as its "pure gauge" part. We 
have suppressed all other factors. Using the 70 Dirac matrix [instead of the 
unit matrix for the U(1) generator], which couples to the A, potential, one 
can construct an invariant term from (/ey"(B.)~/~. We have to choose from 
y~ only the zero component with nonvanishing vacuum expectation 
value, i.e. 

y~ := mc~~ (Bu)yo (12) 

Then one gets the desired mass term m~Teg"e from the first term of (11). 8 
However, one has to balance between different coupling constants, so that 
in a realistic case the VEV may be proportional to m/e or some related 
quantity. 
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